Integral of $$$-9 + \frac{1}{x^{2}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(-9 + \frac{1}{x^{2}}\right)\, dx$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(-9 + \frac{1}{x^{2}}\right)d x}}} = {\color{red}{\left(- \int{9 d x} + \int{\frac{1}{x^{2}} d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=9$$$:
$$\int{\frac{1}{x^{2}} d x} - {\color{red}{\int{9 d x}}} = \int{\frac{1}{x^{2}} d x} - {\color{red}{\left(9 x\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-2$$$:
$$- 9 x + {\color{red}{\int{\frac{1}{x^{2}} d x}}}=- 9 x + {\color{red}{\int{x^{-2} d x}}}=- 9 x + {\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}=- 9 x + {\color{red}{\left(- x^{-1}\right)}}=- 9 x + {\color{red}{\left(- \frac{1}{x}\right)}}$$
Therefore,
$$\int{\left(-9 + \frac{1}{x^{2}}\right)d x} = - 9 x - \frac{1}{x}$$
Add the constant of integration:
$$\int{\left(-9 + \frac{1}{x^{2}}\right)d x} = - 9 x - \frac{1}{x}+C$$
Answer
$$$\int \left(-9 + \frac{1}{x^{2}}\right)\, dx = \left(- 9 x - \frac{1}{x}\right) + C$$$A