Integral of $$$\frac{\cos{\left(x \right)}}{54}$$$

The calculator will find the integral/antiderivative of $$$\frac{\cos{\left(x \right)}}{54}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{\cos{\left(x \right)}}{54}\, dx$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{54}$$$ and $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:

$${\color{red}{\int{\frac{\cos{\left(x \right)}}{54} d x}}} = {\color{red}{\left(\frac{\int{\cos{\left(x \right)} d x}}{54}\right)}}$$

The integral of the cosine is $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:

$$\frac{{\color{red}{\int{\cos{\left(x \right)} d x}}}}{54} = \frac{{\color{red}{\sin{\left(x \right)}}}}{54}$$

Therefore,

$$\int{\frac{\cos{\left(x \right)}}{54} d x} = \frac{\sin{\left(x \right)}}{54}$$

Add the constant of integration:

$$\int{\frac{\cos{\left(x \right)}}{54} d x} = \frac{\sin{\left(x \right)}}{54}+C$$

Answer

$$$\int \frac{\cos{\left(x \right)}}{54}\, dx = \frac{\sin{\left(x \right)}}{54} + C$$$A


Please try a new game Rotatly