Integral of $$$\frac{\cos{\left(x \right)}}{45}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{\cos{\left(x \right)}}{45}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{45}$$$ and $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:
$${\color{red}{\int{\frac{\cos{\left(x \right)}}{45} d x}}} = {\color{red}{\left(\frac{\int{\cos{\left(x \right)} d x}}{45}\right)}}$$
The integral of the cosine is $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$\frac{{\color{red}{\int{\cos{\left(x \right)} d x}}}}{45} = \frac{{\color{red}{\sin{\left(x \right)}}}}{45}$$
Therefore,
$$\int{\frac{\cos{\left(x \right)}}{45} d x} = \frac{\sin{\left(x \right)}}{45}$$
Add the constant of integration:
$$\int{\frac{\cos{\left(x \right)}}{45} d x} = \frac{\sin{\left(x \right)}}{45}+C$$
Answer
$$$\int \frac{\cos{\left(x \right)}}{45}\, dx = \frac{\sin{\left(x \right)}}{45} + C$$$A