Integral of $$$\frac{1}{6 x^{3} - 7 x^{2} - 3 x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{6 x^{3} - 7 x^{2} - 3 x}\, dx$$$.
Solution
Perform partial fraction decomposition (steps can be seen »):
$${\color{red}{\int{\frac{1}{6 x^{3} - 7 x^{2} - 3 x} d x}}} = {\color{red}{\int{\left(\frac{9}{11 \left(3 x + 1\right)} + \frac{4}{33 \left(2 x - 3\right)} - \frac{1}{3 x}\right)d x}}}$$
Integrate term by term:
$${\color{red}{\int{\left(\frac{9}{11 \left(3 x + 1\right)} + \frac{4}{33 \left(2 x - 3\right)} - \frac{1}{3 x}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{3 x} d x} + \int{\frac{4}{33 \left(2 x - 3\right)} d x} + \int{\frac{9}{11 \left(3 x + 1\right)} d x}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{3}$$$ and $$$f{\left(x \right)} = \frac{1}{x}$$$:
$$\int{\frac{4}{33 \left(2 x - 3\right)} d x} + \int{\frac{9}{11 \left(3 x + 1\right)} d x} - {\color{red}{\int{\frac{1}{3 x} d x}}} = \int{\frac{4}{33 \left(2 x - 3\right)} d x} + \int{\frac{9}{11 \left(3 x + 1\right)} d x} - {\color{red}{\left(\frac{\int{\frac{1}{x} d x}}{3}\right)}}$$
The integral of $$$\frac{1}{x}$$$ is $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$\int{\frac{4}{33 \left(2 x - 3\right)} d x} + \int{\frac{9}{11 \left(3 x + 1\right)} d x} - \frac{{\color{red}{\int{\frac{1}{x} d x}}}}{3} = \int{\frac{4}{33 \left(2 x - 3\right)} d x} + \int{\frac{9}{11 \left(3 x + 1\right)} d x} - \frac{{\color{red}{\ln{\left(\left|{x}\right| \right)}}}}{3}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{4}{33}$$$ and $$$f{\left(x \right)} = \frac{1}{2 x - 3}$$$:
$$- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \int{\frac{9}{11 \left(3 x + 1\right)} d x} + {\color{red}{\int{\frac{4}{33 \left(2 x - 3\right)} d x}}} = - \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \int{\frac{9}{11 \left(3 x + 1\right)} d x} + {\color{red}{\left(\frac{4 \int{\frac{1}{2 x - 3} d x}}{33}\right)}}$$
Let $$$u=2 x - 3$$$.
Then $$$du=\left(2 x - 3\right)^{\prime }dx = 2 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{2}$$$.
The integral becomes
$$- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \int{\frac{9}{11 \left(3 x + 1\right)} d x} + \frac{4 {\color{red}{\int{\frac{1}{2 x - 3} d x}}}}{33} = - \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \int{\frac{9}{11 \left(3 x + 1\right)} d x} + \frac{4 {\color{red}{\int{\frac{1}{2 u} d u}}}}{33}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \frac{1}{u}$$$:
$$- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \int{\frac{9}{11 \left(3 x + 1\right)} d x} + \frac{4 {\color{red}{\int{\frac{1}{2 u} d u}}}}{33} = - \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \int{\frac{9}{11 \left(3 x + 1\right)} d x} + \frac{4 {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{2}\right)}}}{33}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \int{\frac{9}{11 \left(3 x + 1\right)} d x} + \frac{2 {\color{red}{\int{\frac{1}{u} d u}}}}{33} = - \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \int{\frac{9}{11 \left(3 x + 1\right)} d x} + \frac{2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{33}$$
Recall that $$$u=2 x - 3$$$:
$$- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{33} + \int{\frac{9}{11 \left(3 x + 1\right)} d x} = - \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{2 \ln{\left(\left|{{\color{red}{\left(2 x - 3\right)}}}\right| \right)}}{33} + \int{\frac{9}{11 \left(3 x + 1\right)} d x}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{9}{11}$$$ and $$$f{\left(x \right)} = \frac{1}{3 x + 1}$$$:
$$- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{2 \ln{\left(\left|{2 x - 3}\right| \right)}}{33} + {\color{red}{\int{\frac{9}{11 \left(3 x + 1\right)} d x}}} = - \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{2 \ln{\left(\left|{2 x - 3}\right| \right)}}{33} + {\color{red}{\left(\frac{9 \int{\frac{1}{3 x + 1} d x}}{11}\right)}}$$
Let $$$u=3 x + 1$$$.
Then $$$du=\left(3 x + 1\right)^{\prime }dx = 3 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{3}$$$.
The integral can be rewritten as
$$- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{2 \ln{\left(\left|{2 x - 3}\right| \right)}}{33} + \frac{9 {\color{red}{\int{\frac{1}{3 x + 1} d x}}}}{11} = - \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{2 \ln{\left(\left|{2 x - 3}\right| \right)}}{33} + \frac{9 {\color{red}{\int{\frac{1}{3 u} d u}}}}{11}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{3}$$$ and $$$f{\left(u \right)} = \frac{1}{u}$$$:
$$- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{2 \ln{\left(\left|{2 x - 3}\right| \right)}}{33} + \frac{9 {\color{red}{\int{\frac{1}{3 u} d u}}}}{11} = - \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{2 \ln{\left(\left|{2 x - 3}\right| \right)}}{33} + \frac{9 {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{3}\right)}}}{11}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{2 \ln{\left(\left|{2 x - 3}\right| \right)}}{33} + \frac{3 {\color{red}{\int{\frac{1}{u} d u}}}}{11} = - \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{2 \ln{\left(\left|{2 x - 3}\right| \right)}}{33} + \frac{3 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{11}$$
Recall that $$$u=3 x + 1$$$:
$$- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{2 \ln{\left(\left|{2 x - 3}\right| \right)}}{33} + \frac{3 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{11} = - \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{2 \ln{\left(\left|{2 x - 3}\right| \right)}}{33} + \frac{3 \ln{\left(\left|{{\color{red}{\left(3 x + 1\right)}}}\right| \right)}}{11}$$
Therefore,
$$\int{\frac{1}{6 x^{3} - 7 x^{2} - 3 x} d x} = - \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{2 \ln{\left(\left|{2 x - 3}\right| \right)}}{33} + \frac{3 \ln{\left(\left|{3 x + 1}\right| \right)}}{11}$$
Simplify:
$$\int{\frac{1}{6 x^{3} - 7 x^{2} - 3 x} d x} = \frac{- 11 \ln{\left(\left|{x}\right| \right)} + 2 \ln{\left(\left|{2 x - 3}\right| \right)} + 9 \ln{\left(\left|{3 x + 1}\right| \right)}}{33}$$
Add the constant of integration:
$$\int{\frac{1}{6 x^{3} - 7 x^{2} - 3 x} d x} = \frac{- 11 \ln{\left(\left|{x}\right| \right)} + 2 \ln{\left(\left|{2 x - 3}\right| \right)} + 9 \ln{\left(\left|{3 x + 1}\right| \right)}}{33}+C$$
Answer
$$$\int \frac{1}{6 x^{3} - 7 x^{2} - 3 x}\, dx = \frac{- 11 \ln\left(\left|{x}\right|\right) + 2 \ln\left(\left|{2 x - 3}\right|\right) + 9 \ln\left(\left|{3 x + 1}\right|\right)}{33} + C$$$A