Integral of $$$\frac{1}{\sec{\left(v \right)}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{\sec{\left(v \right)}}\, dv$$$.
Solution
Rewrite the integrand in terms of the cosine:
$${\color{red}{\int{\frac{1}{\sec{\left(v \right)}} d v}}} = {\color{red}{\int{\cos{\left(v \right)} d v}}}$$
The integral of the cosine is $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$${\color{red}{\int{\cos{\left(v \right)} d v}}} = {\color{red}{\sin{\left(v \right)}}}$$
Therefore,
$$\int{\frac{1}{\sec{\left(v \right)}} d v} = \sin{\left(v \right)}$$
Add the constant of integration:
$$\int{\frac{1}{\sec{\left(v \right)}} d v} = \sin{\left(v \right)}+C$$
Answer
$$$\int \frac{1}{\sec{\left(v \right)}}\, dv = \sin{\left(v \right)} + C$$$A