Integral of $$$\frac{1}{t^{2} - 2 t}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{t^{2} - 2 t}\, dt$$$.
Solution
Perform partial fraction decomposition (steps can be seen »):
$${\color{red}{\int{\frac{1}{t^{2} - 2 t} d t}}} = {\color{red}{\int{\left(\frac{1}{2 \left(t - 2\right)} - \frac{1}{2 t}\right)d t}}}$$
Integrate term by term:
$${\color{red}{\int{\left(\frac{1}{2 \left(t - 2\right)} - \frac{1}{2 t}\right)d t}}} = {\color{red}{\left(- \int{\frac{1}{2 t} d t} + \int{\frac{1}{2 \left(t - 2\right)} d t}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(t \right)} = \frac{1}{t - 2}$$$:
$$- \int{\frac{1}{2 t} d t} + {\color{red}{\int{\frac{1}{2 \left(t - 2\right)} d t}}} = - \int{\frac{1}{2 t} d t} + {\color{red}{\left(\frac{\int{\frac{1}{t - 2} d t}}{2}\right)}}$$
Let $$$u=t - 2$$$.
Then $$$du=\left(t - 2\right)^{\prime }dt = 1 dt$$$ (steps can be seen »), and we have that $$$dt = du$$$.
Thus,
$$- \int{\frac{1}{2 t} d t} + \frac{{\color{red}{\int{\frac{1}{t - 2} d t}}}}{2} = - \int{\frac{1}{2 t} d t} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \int{\frac{1}{2 t} d t} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = - \int{\frac{1}{2 t} d t} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Recall that $$$u=t - 2$$$:
$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \int{\frac{1}{2 t} d t} = \frac{\ln{\left(\left|{{\color{red}{\left(t - 2\right)}}}\right| \right)}}{2} - \int{\frac{1}{2 t} d t}$$
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(t \right)} = \frac{1}{t}$$$:
$$\frac{\ln{\left(\left|{t - 2}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{2 t} d t}}} = \frac{\ln{\left(\left|{t - 2}\right| \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{t} d t}}{2}\right)}}$$
The integral of $$$\frac{1}{t}$$$ is $$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}$$$:
$$\frac{\ln{\left(\left|{t - 2}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{t} d t}}}}{2} = \frac{\ln{\left(\left|{t - 2}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{t}\right| \right)}}}}{2}$$
Therefore,
$$\int{\frac{1}{t^{2} - 2 t} d t} = - \frac{\ln{\left(\left|{t}\right| \right)}}{2} + \frac{\ln{\left(\left|{t - 2}\right| \right)}}{2}$$
Simplify:
$$\int{\frac{1}{t^{2} - 2 t} d t} = \frac{- \ln{\left(\left|{t}\right| \right)} + \ln{\left(\left|{t - 2}\right| \right)}}{2}$$
Add the constant of integration:
$$\int{\frac{1}{t^{2} - 2 t} d t} = \frac{- \ln{\left(\left|{t}\right| \right)} + \ln{\left(\left|{t - 2}\right| \right)}}{2}+C$$
Answer
$$$\int \frac{1}{t^{2} - 2 t}\, dt = \frac{- \ln\left(\left|{t}\right|\right) + \ln\left(\left|{t - 2}\right|\right)}{2} + C$$$A