Integral of $$$\frac{1}{t}$$$ with respect to $$$q$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{t}\, dq$$$.
Solution
Apply the constant rule $$$\int c\, dq = c q$$$ with $$$c=\frac{1}{t}$$$:
$${\color{red}{\int{\frac{1}{t} d q}}} = {\color{red}{\frac{q}{t}}}$$
Therefore,
$$\int{\frac{1}{t} d q} = \frac{q}{t}$$
Add the constant of integration:
$$\int{\frac{1}{t} d q} = \frac{q}{t}+C$$
Answer
$$$\int \frac{1}{t}\, dq = \frac{q}{t} + C$$$A
Please try a new game Rotatly