Integral of $$$\cot^{3}{\left(\frac{x}{5} \right)} \csc^{3}{\left(\frac{x}{5} \right)}$$$

The calculator will find the integral/antiderivative of $$$\cot^{3}{\left(\frac{x}{5} \right)} \csc^{3}{\left(\frac{x}{5} \right)}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \cot^{3}{\left(\frac{x}{5} \right)} \csc^{3}{\left(\frac{x}{5} \right)}\, dx$$$.

Solution

Let $$$u=\frac{x}{5}$$$.

Then $$$du=\left(\frac{x}{5}\right)^{\prime }dx = \frac{dx}{5}$$$ (steps can be seen »), and we have that $$$dx = 5 du$$$.

Therefore,

$${\color{red}{\int{\cot^{3}{\left(\frac{x}{5} \right)} \csc^{3}{\left(\frac{x}{5} \right)} d x}}} = {\color{red}{\int{5 \cot^{3}{\left(u \right)} \csc^{3}{\left(u \right)} d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=5$$$ and $$$f{\left(u \right)} = \cot^{3}{\left(u \right)} \csc^{3}{\left(u \right)}$$$:

$${\color{red}{\int{5 \cot^{3}{\left(u \right)} \csc^{3}{\left(u \right)} d u}}} = {\color{red}{\left(5 \int{\cot^{3}{\left(u \right)} \csc^{3}{\left(u \right)} d u}\right)}}$$

Strip out one cotangent and write everything else in terms of the cosecant, using the formula $$$\cot^2\left( u \right)=\csc^2\left( u \right)-1$$$:

$$5 {\color{red}{\int{\cot^{3}{\left(u \right)} \csc^{3}{\left(u \right)} d u}}} = 5 {\color{red}{\int{\left(\csc^{2}{\left(u \right)} - 1\right) \cot{\left(u \right)} \csc^{3}{\left(u \right)} d u}}}$$

Let $$$v=\csc{\left(u \right)}$$$.

Then $$$dv=\left(\csc{\left(u \right)}\right)^{\prime }du = - \cot{\left(u \right)} \csc{\left(u \right)} du$$$ (steps can be seen »), and we have that $$$\cot{\left(u \right)} \csc{\left(u \right)} du = - dv$$$.

Thus,

$$5 {\color{red}{\int{\left(\csc^{2}{\left(u \right)} - 1\right) \cot{\left(u \right)} \csc^{3}{\left(u \right)} d u}}} = 5 {\color{red}{\int{\left(- v^{2} \left(v^{2} - 1\right)\right)d v}}}$$

Apply the constant multiple rule $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ with $$$c=-1$$$ and $$$f{\left(v \right)} = v^{2} \left(v^{2} - 1\right)$$$:

$$5 {\color{red}{\int{\left(- v^{2} \left(v^{2} - 1\right)\right)d v}}} = 5 {\color{red}{\left(- \int{v^{2} \left(v^{2} - 1\right) d v}\right)}}$$

Expand the expression:

$$- 5 {\color{red}{\int{v^{2} \left(v^{2} - 1\right) d v}}} = - 5 {\color{red}{\int{\left(v^{4} - v^{2}\right)d v}}}$$

Integrate term by term:

$$- 5 {\color{red}{\int{\left(v^{4} - v^{2}\right)d v}}} = - 5 {\color{red}{\left(- \int{v^{2} d v} + \int{v^{4} d v}\right)}}$$

Apply the power rule $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=4$$$:

$$5 \int{v^{2} d v} - 5 {\color{red}{\int{v^{4} d v}}}=5 \int{v^{2} d v} - 5 {\color{red}{\frac{v^{1 + 4}}{1 + 4}}}=5 \int{v^{2} d v} - 5 {\color{red}{\left(\frac{v^{5}}{5}\right)}}$$

Apply the power rule $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:

$$- v^{5} + 5 {\color{red}{\int{v^{2} d v}}}=- v^{5} + 5 {\color{red}{\frac{v^{1 + 2}}{1 + 2}}}=- v^{5} + 5 {\color{red}{\left(\frac{v^{3}}{3}\right)}}$$

Recall that $$$v=\csc{\left(u \right)}$$$:

$$\frac{5 {\color{red}{v}}^{3}}{3} - {\color{red}{v}}^{5} = \frac{5 {\color{red}{\csc{\left(u \right)}}}^{3}}{3} - {\color{red}{\csc{\left(u \right)}}}^{5}$$

Recall that $$$u=\frac{x}{5}$$$:

$$\frac{5 \csc^{3}{\left({\color{red}{u}} \right)}}{3} - \csc^{5}{\left({\color{red}{u}} \right)} = \frac{5 \csc^{3}{\left({\color{red}{\left(\frac{x}{5}\right)}} \right)}}{3} - \csc^{5}{\left({\color{red}{\left(\frac{x}{5}\right)}} \right)}$$

Therefore,

$$\int{\cot^{3}{\left(\frac{x}{5} \right)} \csc^{3}{\left(\frac{x}{5} \right)} d x} = - \csc^{5}{\left(\frac{x}{5} \right)} + \frac{5 \csc^{3}{\left(\frac{x}{5} \right)}}{3}$$

Simplify:

$$\int{\cot^{3}{\left(\frac{x}{5} \right)} \csc^{3}{\left(\frac{x}{5} \right)} d x} = \left(\frac{5}{3} - \csc^{2}{\left(\frac{x}{5} \right)}\right) \csc^{3}{\left(\frac{x}{5} \right)}$$

Add the constant of integration:

$$\int{\cot^{3}{\left(\frac{x}{5} \right)} \csc^{3}{\left(\frac{x}{5} \right)} d x} = \left(\frac{5}{3} - \csc^{2}{\left(\frac{x}{5} \right)}\right) \csc^{3}{\left(\frac{x}{5} \right)}+C$$

Answer

$$$\int \cot^{3}{\left(\frac{x}{5} \right)} \csc^{3}{\left(\frac{x}{5} \right)}\, dx = \left(\frac{5}{3} - \csc^{2}{\left(\frac{x}{5} \right)}\right) \csc^{3}{\left(\frac{x}{5} \right)} + C$$$A


Please try a new game Rotatly