Integral of $$$1 - \sin{\left(x \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(1 - \sin{\left(x \right)}\right)\, dx$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(1 - \sin{\left(x \right)}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{\sin{\left(x \right)} d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:
$$- \int{\sin{\left(x \right)} d x} + {\color{red}{\int{1 d x}}} = - \int{\sin{\left(x \right)} d x} + {\color{red}{x}}$$
The integral of the sine is $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$x - {\color{red}{\int{\sin{\left(x \right)} d x}}} = x - {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Therefore,
$$\int{\left(1 - \sin{\left(x \right)}\right)d x} = x + \cos{\left(x \right)}$$
Add the constant of integration:
$$\int{\left(1 - \sin{\left(x \right)}\right)d x} = x + \cos{\left(x \right)}+C$$
Answer
$$$\int \left(1 - \sin{\left(x \right)}\right)\, dx = \left(x + \cos{\left(x \right)}\right) + C$$$A