Integral of $$$1 - \sin{\left(x \right)}$$$

The calculator will find the integral/antiderivative of $$$1 - \sin{\left(x \right)}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(1 - \sin{\left(x \right)}\right)\, dx$$$.

Solution

Integrate term by term:

$${\color{red}{\int{\left(1 - \sin{\left(x \right)}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{\sin{\left(x \right)} d x}\right)}}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:

$$- \int{\sin{\left(x \right)} d x} + {\color{red}{\int{1 d x}}} = - \int{\sin{\left(x \right)} d x} + {\color{red}{x}}$$

The integral of the sine is $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$x - {\color{red}{\int{\sin{\left(x \right)} d x}}} = x - {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$

Therefore,

$$\int{\left(1 - \sin{\left(x \right)}\right)d x} = x + \cos{\left(x \right)}$$

Add the constant of integration:

$$\int{\left(1 - \sin{\left(x \right)}\right)d x} = x + \cos{\left(x \right)}+C$$

Answer

$$$\int \left(1 - \sin{\left(x \right)}\right)\, dx = \left(x + \cos{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly