Integral of $$$\cos{\left(2 t \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \cos{\left(2 t \right)}\, dt$$$.
Solution
Let $$$u=2 t$$$.
Then $$$du=\left(2 t\right)^{\prime }dt = 2 dt$$$ (steps can be seen »), and we have that $$$dt = \frac{du}{2}$$$.
The integral can be rewritten as
$${\color{red}{\int{\cos{\left(2 t \right)} d t}}} = {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$
The integral of the cosine is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\sin{\left(u \right)}}}}{2}$$
Recall that $$$u=2 t$$$:
$$\frac{\sin{\left({\color{red}{u}} \right)}}{2} = \frac{\sin{\left({\color{red}{\left(2 t\right)}} \right)}}{2}$$
Therefore,
$$\int{\cos{\left(2 t \right)} d t} = \frac{\sin{\left(2 t \right)}}{2}$$
Add the constant of integration:
$$\int{\cos{\left(2 t \right)} d t} = \frac{\sin{\left(2 t \right)}}{2}+C$$
Answer
$$$\int \cos{\left(2 t \right)}\, dt = \frac{\sin{\left(2 t \right)}}{2} + C$$$A