Integral of $$$x \sin{\left(x \right)} \cos{\left(3 \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int x \sin{\left(x \right)} \cos{\left(3 \right)}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\cos{\left(3 \right)}$$$ and $$$f{\left(x \right)} = x \sin{\left(x \right)}$$$:
$${\color{red}{\int{x \sin{\left(x \right)} \cos{\left(3 \right)} d x}}} = {\color{red}{\cos{\left(3 \right)} \int{x \sin{\left(x \right)} d x}}}$$
For the integral $$$\int{x \sin{\left(x \right)} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Let $$$\operatorname{u}=x$$$ and $$$\operatorname{dv}=\sin{\left(x \right)} dx$$$.
Then $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{\sin{\left(x \right)} d x}=- \cos{\left(x \right)}$$$ (steps can be seen »).
Therefore,
$$\cos{\left(3 \right)} {\color{red}{\int{x \sin{\left(x \right)} d x}}}=\cos{\left(3 \right)} {\color{red}{\left(x \cdot \left(- \cos{\left(x \right)}\right)-\int{\left(- \cos{\left(x \right)}\right) \cdot 1 d x}\right)}}=\cos{\left(3 \right)} {\color{red}{\left(- x \cos{\left(x \right)} - \int{\left(- \cos{\left(x \right)}\right)d x}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=-1$$$ and $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:
$$\cos{\left(3 \right)} \left(- x \cos{\left(x \right)} - {\color{red}{\int{\left(- \cos{\left(x \right)}\right)d x}}}\right) = \cos{\left(3 \right)} \left(- x \cos{\left(x \right)} - {\color{red}{\left(- \int{\cos{\left(x \right)} d x}\right)}}\right)$$
The integral of the cosine is $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$\cos{\left(3 \right)} \left(- x \cos{\left(x \right)} + {\color{red}{\int{\cos{\left(x \right)} d x}}}\right) = \cos{\left(3 \right)} \left(- x \cos{\left(x \right)} + {\color{red}{\sin{\left(x \right)}}}\right)$$
Therefore,
$$\int{x \sin{\left(x \right)} \cos{\left(3 \right)} d x} = \left(- x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \cos{\left(3 \right)}$$
Add the constant of integration:
$$\int{x \sin{\left(x \right)} \cos{\left(3 \right)} d x} = \left(- x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \cos{\left(3 \right)}+C$$
Answer
$$$\int x \sin{\left(x \right)} \cos{\left(3 \right)}\, dx = \left(- x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \cos{\left(3 \right)} + C$$$A