Integral of $$$\cos{\left(\frac{u}{v} \right)}$$$ with respect to $$$u$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \cos{\left(\frac{u}{v} \right)}\, du$$$.
Solution
Let $$$w=\frac{u}{v}$$$.
Then $$$dw=\left(\frac{u}{v}\right)^{\prime }du = \frac{du}{v}$$$ (steps can be seen »), and we have that $$$du = v dw$$$.
The integral becomes
$${\color{red}{\int{\cos{\left(\frac{u}{v} \right)} d u}}} = {\color{red}{\int{v \cos{\left(w \right)} d w}}}$$
Apply the constant multiple rule $$$\int c f{\left(w \right)}\, dw = c \int f{\left(w \right)}\, dw$$$ with $$$c=v$$$ and $$$f{\left(w \right)} = \cos{\left(w \right)}$$$:
$${\color{red}{\int{v \cos{\left(w \right)} d w}}} = {\color{red}{v \int{\cos{\left(w \right)} d w}}}$$
The integral of the cosine is $$$\int{\cos{\left(w \right)} d w} = \sin{\left(w \right)}$$$:
$$v {\color{red}{\int{\cos{\left(w \right)} d w}}} = v {\color{red}{\sin{\left(w \right)}}}$$
Recall that $$$w=\frac{u}{v}$$$:
$$v \sin{\left({\color{red}{w}} \right)} = v \sin{\left({\color{red}{\frac{u}{v}}} \right)}$$
Therefore,
$$\int{\cos{\left(\frac{u}{v} \right)} d u} = v \sin{\left(\frac{u}{v} \right)}$$
Add the constant of integration:
$$\int{\cos{\left(\frac{u}{v} \right)} d u} = v \sin{\left(\frac{u}{v} \right)}+C$$
Answer
$$$\int \cos{\left(\frac{u}{v} \right)}\, du = v \sin{\left(\frac{u}{v} \right)} + C$$$A