Integral of $$$\cos^{2}{\left(\frac{x}{2} \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \cos^{2}{\left(\frac{x}{2} \right)}\, dx$$$.
Solution
Let $$$u=\frac{x}{2}$$$.
Then $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (steps can be seen »), and we have that $$$dx = 2 du$$$.
So,
$${\color{red}{\int{\cos^{2}{\left(\frac{x}{2} \right)} d x}}} = {\color{red}{\int{2 \cos^{2}{\left(u \right)} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=2$$$ and $$$f{\left(u \right)} = \cos^{2}{\left(u \right)}$$$:
$${\color{red}{\int{2 \cos^{2}{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{\cos^{2}{\left(u \right)} d u}\right)}}$$
Apply the power reducing formula $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ with $$$\alpha= u $$$:
$$2 {\color{red}{\int{\cos^{2}{\left(u \right)} d u}}} = 2 {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \cos{\left(2 u \right)} + 1$$$:
$$2 {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}} = 2 {\color{red}{\left(\frac{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}{2}\right)}}$$
Integrate term by term:
$${\color{red}{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}} = {\color{red}{\left(\int{1 d u} + \int{\cos{\left(2 u \right)} d u}\right)}}$$
Apply the constant rule $$$\int c\, du = c u$$$ with $$$c=1$$$:
$$\int{\cos{\left(2 u \right)} d u} + {\color{red}{\int{1 d u}}} = \int{\cos{\left(2 u \right)} d u} + {\color{red}{u}}$$
Let $$$v=2 u$$$.
Then $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (steps can be seen »), and we have that $$$du = \frac{dv}{2}$$$.
Thus,
$$u + {\color{red}{\int{\cos{\left(2 u \right)} d u}}} = u + {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}$$
Apply the constant multiple rule $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(v \right)} = \cos{\left(v \right)}$$$:
$$u + {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}} = u + {\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}$$
The integral of the cosine is $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$u + \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{2} = u + \frac{{\color{red}{\sin{\left(v \right)}}}}{2}$$
Recall that $$$v=2 u$$$:
$$u + \frac{\sin{\left({\color{red}{v}} \right)}}{2} = u + \frac{\sin{\left({\color{red}{\left(2 u\right)}} \right)}}{2}$$
Recall that $$$u=\frac{x}{2}$$$:
$$\frac{\sin{\left(2 {\color{red}{u}} \right)}}{2} + {\color{red}{u}} = \frac{\sin{\left(2 {\color{red}{\left(\frac{x}{2}\right)}} \right)}}{2} + {\color{red}{\left(\frac{x}{2}\right)}}$$
Therefore,
$$\int{\cos^{2}{\left(\frac{x}{2} \right)} d x} = \frac{x}{2} + \frac{\sin{\left(x \right)}}{2}$$
Simplify:
$$\int{\cos^{2}{\left(\frac{x}{2} \right)} d x} = \frac{x + \sin{\left(x \right)}}{2}$$
Add the constant of integration:
$$\int{\cos^{2}{\left(\frac{x}{2} \right)} d x} = \frac{x + \sin{\left(x \right)}}{2}+C$$
Answer
$$$\int \cos^{2}{\left(\frac{x}{2} \right)}\, dx = \frac{x + \sin{\left(x \right)}}{2} + C$$$A