Integral of $$$\cos{\left(u \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \cos{\left(u \right)}\, du$$$.
Solution
The integral of the cosine is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\cos{\left(u \right)} d u}}} = {\color{red}{\sin{\left(u \right)}}}$$
Therefore,
$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$
Add the constant of integration:
$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}+C$$
Answer
$$$\int \cos{\left(u \right)}\, du = \sin{\left(u \right)} + C$$$A
Please try a new game Rotatly