Integral of $$$\cos{\left(\frac{t}{2} \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \cos{\left(\frac{t}{2} \right)}\, dt$$$.
Solution
Let $$$u=\frac{t}{2}$$$.
Then $$$du=\left(\frac{t}{2}\right)^{\prime }dt = \frac{dt}{2}$$$ (steps can be seen »), and we have that $$$dt = 2 du$$$.
The integral can be rewritten as
$${\color{red}{\int{\cos{\left(\frac{t}{2} \right)} d t}}} = {\color{red}{\int{2 \cos{\left(u \right)} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=2$$$ and $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$${\color{red}{\int{2 \cos{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{\cos{\left(u \right)} d u}\right)}}$$
The integral of the cosine is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$2 {\color{red}{\int{\cos{\left(u \right)} d u}}} = 2 {\color{red}{\sin{\left(u \right)}}}$$
Recall that $$$u=\frac{t}{2}$$$:
$$2 \sin{\left({\color{red}{u}} \right)} = 2 \sin{\left({\color{red}{\left(\frac{t}{2}\right)}} \right)}$$
Therefore,
$$\int{\cos{\left(\frac{t}{2} \right)} d t} = 2 \sin{\left(\frac{t}{2} \right)}$$
Add the constant of integration:
$$\int{\cos{\left(\frac{t}{2} \right)} d t} = 2 \sin{\left(\frac{t}{2} \right)}+C$$
Answer
$$$\int \cos{\left(\frac{t}{2} \right)}\, dt = 2 \sin{\left(\frac{t}{2} \right)} + C$$$A