Integral of $$$\cos{\left(\frac{2}{x} \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \cos{\left(\frac{2}{x} \right)}\, dx$$$.
Solution
For the integral $$$\int{\cos{\left(\frac{2}{x} \right)} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Let $$$\operatorname{u}=\cos{\left(\frac{2}{x} \right)}$$$ and $$$\operatorname{dv}=dx$$$.
Then $$$\operatorname{du}=\left(\cos{\left(\frac{2}{x} \right)}\right)^{\prime }dx=\frac{2 \sin{\left(\frac{2}{x} \right)}}{x^{2}} dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{1 d x}=x$$$ (steps can be seen »).
So,
$${\color{red}{\int{\cos{\left(\frac{2}{x} \right)} d x}}}={\color{red}{\left(\cos{\left(\frac{2}{x} \right)} \cdot x-\int{x \cdot \frac{2 \sin{\left(\frac{2}{x} \right)}}{x^{2}} d x}\right)}}={\color{red}{\left(x \cos{\left(\frac{2}{x} \right)} - \int{\frac{2 \sin{\left(\frac{2}{x} \right)}}{x} d x}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=2$$$ and $$$f{\left(x \right)} = \frac{\sin{\left(\frac{2}{x} \right)}}{x}$$$:
$$x \cos{\left(\frac{2}{x} \right)} - {\color{red}{\int{\frac{2 \sin{\left(\frac{2}{x} \right)}}{x} d x}}} = x \cos{\left(\frac{2}{x} \right)} - {\color{red}{\left(2 \int{\frac{\sin{\left(\frac{2}{x} \right)}}{x} d x}\right)}}$$
Let $$$u=\frac{2}{x}$$$.
Then $$$du=\left(\frac{2}{x}\right)^{\prime }dx = - \frac{2}{x^{2}} dx$$$ (steps can be seen »), and we have that $$$\frac{dx}{x^{2}} = - \frac{du}{2}$$$.
Thus,
$$x \cos{\left(\frac{2}{x} \right)} - 2 {\color{red}{\int{\frac{\sin{\left(\frac{2}{x} \right)}}{x} d x}}} = x \cos{\left(\frac{2}{x} \right)} - 2 {\color{red}{\int{\left(- \frac{\sin{\left(u \right)}}{u}\right)d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = \frac{\sin{\left(u \right)}}{u}$$$:
$$x \cos{\left(\frac{2}{x} \right)} - 2 {\color{red}{\int{\left(- \frac{\sin{\left(u \right)}}{u}\right)d u}}} = x \cos{\left(\frac{2}{x} \right)} - 2 {\color{red}{\left(- \int{\frac{\sin{\left(u \right)}}{u} d u}\right)}}$$
This integral (Sine Integral) does not have a closed form:
$$x \cos{\left(\frac{2}{x} \right)} + 2 {\color{red}{\int{\frac{\sin{\left(u \right)}}{u} d u}}} = x \cos{\left(\frac{2}{x} \right)} + 2 {\color{red}{\operatorname{Si}{\left(u \right)}}}$$
Recall that $$$u=\frac{2}{x}$$$:
$$x \cos{\left(\frac{2}{x} \right)} + 2 \operatorname{Si}{\left({\color{red}{u}} \right)} = x \cos{\left(\frac{2}{x} \right)} + 2 \operatorname{Si}{\left({\color{red}{\left(\frac{2}{x}\right)}} \right)}$$
Therefore,
$$\int{\cos{\left(\frac{2}{x} \right)} d x} = x \cos{\left(\frac{2}{x} \right)} + 2 \operatorname{Si}{\left(\frac{2}{x} \right)}$$
Add the constant of integration:
$$\int{\cos{\left(\frac{2}{x} \right)} d x} = x \cos{\left(\frac{2}{x} \right)} + 2 \operatorname{Si}{\left(\frac{2}{x} \right)}+C$$
Answer
$$$\int \cos{\left(\frac{2}{x} \right)}\, dx = \left(x \cos{\left(\frac{2}{x} \right)} + 2 \operatorname{Si}{\left(\frac{2}{x} \right)}\right) + C$$$A