Integral of $$$\cos{\left(\frac{2 x}{\pi} \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \cos{\left(\frac{2 x}{\pi} \right)}\, dx$$$.
Solution
Let $$$u=\frac{2 x}{\pi}$$$.
Then $$$du=\left(\frac{2 x}{\pi}\right)^{\prime }dx = \frac{2}{\pi} dx$$$ (steps can be seen »), and we have that $$$dx = \frac{\pi du}{2}$$$.
Therefore,
$${\color{red}{\int{\cos{\left(\frac{2 x}{\pi} \right)} d x}}} = {\color{red}{\int{\frac{\pi \cos{\left(u \right)}}{2} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{\pi}{2}$$$ and $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\pi \cos{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\pi \int{\cos{\left(u \right)} d u}}{2}\right)}}$$
The integral of the cosine is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{\pi {\color{red}{\int{\cos{\left(u \right)} d u}}}}{2} = \frac{\pi {\color{red}{\sin{\left(u \right)}}}}{2}$$
Recall that $$$u=\frac{2 x}{\pi}$$$:
$$\frac{\pi \sin{\left({\color{red}{u}} \right)}}{2} = \frac{\pi \sin{\left({\color{red}{\left(\frac{2 x}{\pi}\right)}} \right)}}{2}$$
Therefore,
$$\int{\cos{\left(\frac{2 x}{\pi} \right)} d x} = \frac{\pi \sin{\left(\frac{2 x}{\pi} \right)}}{2}$$
Add the constant of integration:
$$\int{\cos{\left(\frac{2 x}{\pi} \right)} d x} = \frac{\pi \sin{\left(\frac{2 x}{\pi} \right)}}{2}+C$$
Answer
$$$\int \cos{\left(\frac{2 x}{\pi} \right)}\, dx = \frac{\pi \sin{\left(\frac{2 x}{\pi} \right)}}{2} + C$$$A