Integral of $$$\frac{4}{y}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{4}{y}\, dy$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ with $$$c=4$$$ and $$$f{\left(y \right)} = \frac{1}{y}$$$:
$${\color{red}{\int{\frac{4}{y} d y}}} = {\color{red}{\left(4 \int{\frac{1}{y} d y}\right)}}$$
The integral of $$$\frac{1}{y}$$$ is $$$\int{\frac{1}{y} d y} = \ln{\left(\left|{y}\right| \right)}$$$:
$$4 {\color{red}{\int{\frac{1}{y} d y}}} = 4 {\color{red}{\ln{\left(\left|{y}\right| \right)}}}$$
Therefore,
$$\int{\frac{4}{y} d y} = 4 \ln{\left(\left|{y}\right| \right)}$$
Add the constant of integration:
$$\int{\frac{4}{y} d y} = 4 \ln{\left(\left|{y}\right| \right)}+C$$
Answer
$$$\int \frac{4}{y}\, dy = 4 \ln\left(\left|{y}\right|\right) + C$$$A