Integral of $$$\frac{0^{x}}{\sqrt{1 - x^{4}}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 0\, dx$$$.
Solution
The input is rewritten: $$$\int{\frac{0^{x}}{\sqrt{1 - x^{4}}} d x}=\int{0 d x}$$$.
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=0$$$:
$${\color{red}{\int{0 d x}}} = {\color{red}{\left(0\right)}}$$
Therefore,
$$\int{0 d x} = 0$$
Add the constant of integration:
$$\int{0 d x} = 0+C=C$$
Answer
$$$\int 0\, dx = C$$$A
Please try a new game Rotatly