Integral of $$$\frac{6}{r}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{6}{r}\, dr$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(r \right)}\, dr = c \int f{\left(r \right)}\, dr$$$ with $$$c=6$$$ and $$$f{\left(r \right)} = \frac{1}{r}$$$:
$${\color{red}{\int{\frac{6}{r} d r}}} = {\color{red}{\left(6 \int{\frac{1}{r} d r}\right)}}$$
The integral of $$$\frac{1}{r}$$$ is $$$\int{\frac{1}{r} d r} = \ln{\left(\left|{r}\right| \right)}$$$:
$$6 {\color{red}{\int{\frac{1}{r} d r}}} = 6 {\color{red}{\ln{\left(\left|{r}\right| \right)}}}$$
Therefore,
$$\int{\frac{6}{r} d r} = 6 \ln{\left(\left|{r}\right| \right)}$$
Add the constant of integration:
$$\int{\frac{6}{r} d r} = 6 \ln{\left(\left|{r}\right| \right)}+C$$
Answer
$$$\int \frac{6}{r}\, dr = 6 \ln\left(\left|{r}\right|\right) + C$$$A