Integral of $$$\frac{6 \sin{\left(2 x \right)}}{\sin{\left(x \right)}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{6 \sin{\left(2 x \right)}}{\sin{\left(x \right)}}\, dx$$$.
Solution
Rewrite the integrand:
$${\color{red}{\int{\frac{6 \sin{\left(2 x \right)}}{\sin{\left(x \right)}} d x}}} = {\color{red}{\int{12 \cos{\left(x \right)} d x}}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=12$$$ and $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:
$${\color{red}{\int{12 \cos{\left(x \right)} d x}}} = {\color{red}{\left(12 \int{\cos{\left(x \right)} d x}\right)}}$$
The integral of the cosine is $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$12 {\color{red}{\int{\cos{\left(x \right)} d x}}} = 12 {\color{red}{\sin{\left(x \right)}}}$$
Therefore,
$$\int{\frac{6 \sin{\left(2 x \right)}}{\sin{\left(x \right)}} d x} = 12 \sin{\left(x \right)}$$
Add the constant of integration:
$$\int{\frac{6 \sin{\left(2 x \right)}}{\sin{\left(x \right)}} d x} = 12 \sin{\left(x \right)}+C$$
Answer
$$$\int \frac{6 \sin{\left(2 x \right)}}{\sin{\left(x \right)}}\, dx = 12 \sin{\left(x \right)} + C$$$A