Integral of $$$\frac{6}{x^{2} - 22 x}$$$

The calculator will find the integral/antiderivative of $$$\frac{6}{x^{2} - 22 x}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{6}{x^{2} - 22 x}\, dx$$$.

Solution

Simplify the integrand:

$${\color{red}{\int{\frac{6}{x^{2} - 22 x} d x}}} = {\color{red}{\int{\frac{6}{x \left(x - 22\right)} d x}}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=6$$$ and $$$f{\left(x \right)} = \frac{1}{x \left(x - 22\right)}$$$:

$${\color{red}{\int{\frac{6}{x \left(x - 22\right)} d x}}} = {\color{red}{\left(6 \int{\frac{1}{x \left(x - 22\right)} d x}\right)}}$$

Perform partial fraction decomposition (steps can be seen »):

$$6 {\color{red}{\int{\frac{1}{x \left(x - 22\right)} d x}}} = 6 {\color{red}{\int{\left(\frac{1}{22 \left(x - 22\right)} - \frac{1}{22 x}\right)d x}}}$$

Integrate term by term:

$$6 {\color{red}{\int{\left(\frac{1}{22 \left(x - 22\right)} - \frac{1}{22 x}\right)d x}}} = 6 {\color{red}{\left(- \int{\frac{1}{22 x} d x} + \int{\frac{1}{22 \left(x - 22\right)} d x}\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{22}$$$ and $$$f{\left(x \right)} = \frac{1}{x}$$$:

$$6 \int{\frac{1}{22 \left(x - 22\right)} d x} - 6 {\color{red}{\int{\frac{1}{22 x} d x}}} = 6 \int{\frac{1}{22 \left(x - 22\right)} d x} - 6 {\color{red}{\left(\frac{\int{\frac{1}{x} d x}}{22}\right)}}$$

The integral of $$$\frac{1}{x}$$$ is $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$$6 \int{\frac{1}{22 \left(x - 22\right)} d x} - \frac{3 {\color{red}{\int{\frac{1}{x} d x}}}}{11} = 6 \int{\frac{1}{22 \left(x - 22\right)} d x} - \frac{3 {\color{red}{\ln{\left(\left|{x}\right| \right)}}}}{11}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{22}$$$ and $$$f{\left(x \right)} = \frac{1}{x - 22}$$$:

$$- \frac{3 \ln{\left(\left|{x}\right| \right)}}{11} + 6 {\color{red}{\int{\frac{1}{22 \left(x - 22\right)} d x}}} = - \frac{3 \ln{\left(\left|{x}\right| \right)}}{11} + 6 {\color{red}{\left(\frac{\int{\frac{1}{x - 22} d x}}{22}\right)}}$$

Let $$$u=x - 22$$$.

Then $$$du=\left(x - 22\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.

The integral becomes

$$- \frac{3 \ln{\left(\left|{x}\right| \right)}}{11} + \frac{3 {\color{red}{\int{\frac{1}{x - 22} d x}}}}{11} = - \frac{3 \ln{\left(\left|{x}\right| \right)}}{11} + \frac{3 {\color{red}{\int{\frac{1}{u} d u}}}}{11}$$

The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \frac{3 \ln{\left(\left|{x}\right| \right)}}{11} + \frac{3 {\color{red}{\int{\frac{1}{u} d u}}}}{11} = - \frac{3 \ln{\left(\left|{x}\right| \right)}}{11} + \frac{3 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{11}$$

Recall that $$$u=x - 22$$$:

$$- \frac{3 \ln{\left(\left|{x}\right| \right)}}{11} + \frac{3 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{11} = - \frac{3 \ln{\left(\left|{x}\right| \right)}}{11} + \frac{3 \ln{\left(\left|{{\color{red}{\left(x - 22\right)}}}\right| \right)}}{11}$$

Therefore,

$$\int{\frac{6}{x^{2} - 22 x} d x} = - \frac{3 \ln{\left(\left|{x}\right| \right)}}{11} + \frac{3 \ln{\left(\left|{x - 22}\right| \right)}}{11}$$

Simplify:

$$\int{\frac{6}{x^{2} - 22 x} d x} = \frac{3 \left(- \ln{\left(\left|{x}\right| \right)} + \ln{\left(\left|{x - 22}\right| \right)}\right)}{11}$$

Add the constant of integration:

$$\int{\frac{6}{x^{2} - 22 x} d x} = \frac{3 \left(- \ln{\left(\left|{x}\right| \right)} + \ln{\left(\left|{x - 22}\right| \right)}\right)}{11}+C$$

Answer

$$$\int \frac{6}{x^{2} - 22 x}\, dx = \frac{3 \left(- \ln\left(\left|{x}\right|\right) + \ln\left(\left|{x - 22}\right|\right)\right)}{11} + C$$$A


Please try a new game Rotatly