Integral of $$$5 \sin{\left(5 x \right)}$$$

The calculator will find the integral/antiderivative of $$$5 \sin{\left(5 x \right)}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int 5 \sin{\left(5 x \right)}\, dx$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=5$$$ and $$$f{\left(x \right)} = \sin{\left(5 x \right)}$$$:

$${\color{red}{\int{5 \sin{\left(5 x \right)} d x}}} = {\color{red}{\left(5 \int{\sin{\left(5 x \right)} d x}\right)}}$$

Let $$$u=5 x$$$.

Then $$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{5}$$$.

Thus,

$$5 {\color{red}{\int{\sin{\left(5 x \right)} d x}}} = 5 {\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{5}$$$ and $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$5 {\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}} = 5 {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{5}\right)}}$$

The integral of the sine is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$${\color{red}{\int{\sin{\left(u \right)} d u}}} = {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$

Recall that $$$u=5 x$$$:

$$- \cos{\left({\color{red}{u}} \right)} = - \cos{\left({\color{red}{\left(5 x\right)}} \right)}$$

Therefore,

$$\int{5 \sin{\left(5 x \right)} d x} = - \cos{\left(5 x \right)}$$

Add the constant of integration:

$$\int{5 \sin{\left(5 x \right)} d x} = - \cos{\left(5 x \right)}+C$$

Answer

$$$\int 5 \sin{\left(5 x \right)}\, dx = - \cos{\left(5 x \right)} + C$$$A


Please try a new game Rotatly