Integral of $$$5^{x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 5^{x}\, dx$$$.
Solution
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=5$$$:
$${\color{red}{\int{5^{x} d x}}} = {\color{red}{\frac{5^{x}}{\ln{\left(5 \right)}}}}$$
Therefore,
$$\int{5^{x} d x} = \frac{5^{x}}{\ln{\left(5 \right)}}$$
Add the constant of integration:
$$\int{5^{x} d x} = \frac{5^{x}}{\ln{\left(5 \right)}}+C$$
Answer
$$$\int 5^{x}\, dx = \frac{5^{x}}{\ln\left(5\right)} + C$$$A
Please try a new game Rotatly