Integral of $$$\frac{5}{7} - 3 x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(\frac{5}{7} - 3 x\right)\, dx$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(\frac{5}{7} - 3 x\right)d x}}} = {\color{red}{\left(\int{\frac{5}{7} d x} - \int{3 x d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=\frac{5}{7}$$$:
$$- \int{3 x d x} + {\color{red}{\int{\frac{5}{7} d x}}} = - \int{3 x d x} + {\color{red}{\left(\frac{5 x}{7}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=3$$$ and $$$f{\left(x \right)} = x$$$:
$$\frac{5 x}{7} - {\color{red}{\int{3 x d x}}} = \frac{5 x}{7} - {\color{red}{\left(3 \int{x d x}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$$\frac{5 x}{7} - 3 {\color{red}{\int{x d x}}}=\frac{5 x}{7} - 3 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\frac{5 x}{7} - 3 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Therefore,
$$\int{\left(\frac{5}{7} - 3 x\right)d x} = - \frac{3 x^{2}}{2} + \frac{5 x}{7}$$
Simplify:
$$\int{\left(\frac{5}{7} - 3 x\right)d x} = \frac{x \left(10 - 21 x\right)}{14}$$
Add the constant of integration:
$$\int{\left(\frac{5}{7} - 3 x\right)d x} = \frac{x \left(10 - 21 x\right)}{14}+C$$
Answer
$$$\int \left(\frac{5}{7} - 3 x\right)\, dx = \frac{x \left(10 - 21 x\right)}{14} + C$$$A