Integral of $$$\frac{4 x}{x - 6}$$$

The calculator will find the integral/antiderivative of $$$\frac{4 x}{x - 6}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{4 x}{x - 6}\, dx$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=4$$$ and $$$f{\left(x \right)} = \frac{x}{x - 6}$$$:

$${\color{red}{\int{\frac{4 x}{x - 6} d x}}} = {\color{red}{\left(4 \int{\frac{x}{x - 6} d x}\right)}}$$

Rewrite and split the fraction:

$$4 {\color{red}{\int{\frac{x}{x - 6} d x}}} = 4 {\color{red}{\int{\left(1 + \frac{6}{x - 6}\right)d x}}}$$

Integrate term by term:

$$4 {\color{red}{\int{\left(1 + \frac{6}{x - 6}\right)d x}}} = 4 {\color{red}{\left(\int{1 d x} + \int{\frac{6}{x - 6} d x}\right)}}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:

$$4 \int{\frac{6}{x - 6} d x} + 4 {\color{red}{\int{1 d x}}} = 4 \int{\frac{6}{x - 6} d x} + 4 {\color{red}{x}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=6$$$ and $$$f{\left(x \right)} = \frac{1}{x - 6}$$$:

$$4 x + 4 {\color{red}{\int{\frac{6}{x - 6} d x}}} = 4 x + 4 {\color{red}{\left(6 \int{\frac{1}{x - 6} d x}\right)}}$$

Let $$$u=x - 6$$$.

Then $$$du=\left(x - 6\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.

Therefore,

$$4 x + 24 {\color{red}{\int{\frac{1}{x - 6} d x}}} = 4 x + 24 {\color{red}{\int{\frac{1}{u} d u}}}$$

The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$4 x + 24 {\color{red}{\int{\frac{1}{u} d u}}} = 4 x + 24 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Recall that $$$u=x - 6$$$:

$$4 x + 24 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 4 x + 24 \ln{\left(\left|{{\color{red}{\left(x - 6\right)}}}\right| \right)}$$

Therefore,

$$\int{\frac{4 x}{x - 6} d x} = 4 x + 24 \ln{\left(\left|{x - 6}\right| \right)}$$

Add the constant of integration:

$$\int{\frac{4 x}{x - 6} d x} = 4 x + 24 \ln{\left(\left|{x - 6}\right| \right)}+C$$

Answer

$$$\int \frac{4 x}{x - 6}\, dx = \left(4 x + 24 \ln\left(\left|{x - 6}\right|\right)\right) + C$$$A


Please try a new game Rotatly