Integral of $$$4 \sin^{2}{\left(\theta \right)}$$$

The calculator will find the integral/antiderivative of $$$4 \sin^{2}{\left(\theta \right)}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int 4 \sin^{2}{\left(\theta \right)}\, d\theta$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ with $$$c=4$$$ and $$$f{\left(\theta \right)} = \sin^{2}{\left(\theta \right)}$$$:

$${\color{red}{\int{4 \sin^{2}{\left(\theta \right)} d \theta}}} = {\color{red}{\left(4 \int{\sin^{2}{\left(\theta \right)} d \theta}\right)}}$$

Apply the power reducing formula $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ with $$$\alpha=\theta$$$:

$$4 {\color{red}{\int{\sin^{2}{\left(\theta \right)} d \theta}}} = 4 {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 \theta \right)}}{2}\right)d \theta}}}$$

Apply the constant multiple rule $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(\theta \right)} = 1 - \cos{\left(2 \theta \right)}$$$:

$$4 {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 \theta \right)}}{2}\right)d \theta}}} = 4 {\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 \theta \right)}\right)d \theta}}{2}\right)}}$$

Integrate term by term:

$$2 {\color{red}{\int{\left(1 - \cos{\left(2 \theta \right)}\right)d \theta}}} = 2 {\color{red}{\left(\int{1 d \theta} - \int{\cos{\left(2 \theta \right)} d \theta}\right)}}$$

Apply the constant rule $$$\int c\, d\theta = c \theta$$$ with $$$c=1$$$:

$$- 2 \int{\cos{\left(2 \theta \right)} d \theta} + 2 {\color{red}{\int{1 d \theta}}} = - 2 \int{\cos{\left(2 \theta \right)} d \theta} + 2 {\color{red}{\theta}}$$

Let $$$u=2 \theta$$$.

Then $$$du=\left(2 \theta\right)^{\prime }d\theta = 2 d\theta$$$ (steps can be seen »), and we have that $$$d\theta = \frac{du}{2}$$$.

The integral can be rewritten as

$$2 \theta - 2 {\color{red}{\int{\cos{\left(2 \theta \right)} d \theta}}} = 2 \theta - 2 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$2 \theta - 2 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = 2 \theta - 2 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$

The integral of the cosine is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$2 \theta - {\color{red}{\int{\cos{\left(u \right)} d u}}} = 2 \theta - {\color{red}{\sin{\left(u \right)}}}$$

Recall that $$$u=2 \theta$$$:

$$2 \theta - \sin{\left({\color{red}{u}} \right)} = 2 \theta - \sin{\left({\color{red}{\left(2 \theta\right)}} \right)}$$

Therefore,

$$\int{4 \sin^{2}{\left(\theta \right)} d \theta} = 2 \theta - \sin{\left(2 \theta \right)}$$

Add the constant of integration:

$$\int{4 \sin^{2}{\left(\theta \right)} d \theta} = 2 \theta - \sin{\left(2 \theta \right)}+C$$

Answer

$$$\int 4 \sin^{2}{\left(\theta \right)}\, d\theta = \left(2 \theta - \sin{\left(2 \theta \right)}\right) + C$$$A


Please try a new game Rotatly