Integral of $$$4 e^{x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 4 e^{x}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=4$$$ and $$$f{\left(x \right)} = e^{x}$$$:
$${\color{red}{\int{4 e^{x} d x}}} = {\color{red}{\left(4 \int{e^{x} d x}\right)}}$$
The integral of the exponential function is $$$\int{e^{x} d x} = e^{x}$$$:
$$4 {\color{red}{\int{e^{x} d x}}} = 4 {\color{red}{e^{x}}}$$
Therefore,
$$\int{4 e^{x} d x} = 4 e^{x}$$
Add the constant of integration:
$$\int{4 e^{x} d x} = 4 e^{x}+C$$
Answer
$$$\int 4 e^{x}\, dx = 4 e^{x} + C$$$A
Please try a new game Rotatly