Integral of $$$\frac{1}{126 t}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{126 t}\, dt$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=\frac{1}{126}$$$ and $$$f{\left(t \right)} = \frac{1}{t}$$$:
$${\color{red}{\int{\frac{1}{126 t} d t}}} = {\color{red}{\left(\frac{\int{\frac{1}{t} d t}}{126}\right)}}$$
The integral of $$$\frac{1}{t}$$$ is $$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{t} d t}}}}{126} = \frac{{\color{red}{\ln{\left(\left|{t}\right| \right)}}}}{126}$$
Therefore,
$$\int{\frac{1}{126 t} d t} = \frac{\ln{\left(\left|{t}\right| \right)}}{126}$$
Add the constant of integration:
$$\int{\frac{1}{126 t} d t} = \frac{\ln{\left(\left|{t}\right| \right)}}{126}+C$$
Answer
$$$\int \frac{1}{126 t}\, dt = \frac{\ln\left(\left|{t}\right|\right)}{126} + C$$$A