Integral of $$$\frac{1}{126 t}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{126 t}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{1}{126 t}\, dt$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=\frac{1}{126}$$$ and $$$f{\left(t \right)} = \frac{1}{t}$$$:

$${\color{red}{\int{\frac{1}{126 t} d t}}} = {\color{red}{\left(\frac{\int{\frac{1}{t} d t}}{126}\right)}}$$

The integral of $$$\frac{1}{t}$$$ is $$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}$$$:

$$\frac{{\color{red}{\int{\frac{1}{t} d t}}}}{126} = \frac{{\color{red}{\ln{\left(\left|{t}\right| \right)}}}}{126}$$

Therefore,

$$\int{\frac{1}{126 t} d t} = \frac{\ln{\left(\left|{t}\right| \right)}}{126}$$

Add the constant of integration:

$$\int{\frac{1}{126 t} d t} = \frac{\ln{\left(\left|{t}\right| \right)}}{126}+C$$

Answer

$$$\int \frac{1}{126 t}\, dt = \frac{\ln\left(\left|{t}\right|\right)}{126} + C$$$A


Please try a new game Rotatly