Integral of $$$3 x - 5$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(3 x - 5\right)\, dx$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(3 x - 5\right)d x}}} = {\color{red}{\left(- \int{5 d x} + \int{3 x d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=5$$$:
$$\int{3 x d x} - {\color{red}{\int{5 d x}}} = \int{3 x d x} - {\color{red}{\left(5 x\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=3$$$ and $$$f{\left(x \right)} = x$$$:
$$- 5 x + {\color{red}{\int{3 x d x}}} = - 5 x + {\color{red}{\left(3 \int{x d x}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$$- 5 x + 3 {\color{red}{\int{x d x}}}=- 5 x + 3 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- 5 x + 3 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Therefore,
$$\int{\left(3 x - 5\right)d x} = \frac{3 x^{2}}{2} - 5 x$$
Simplify:
$$\int{\left(3 x - 5\right)d x} = \frac{x \left(3 x - 10\right)}{2}$$
Add the constant of integration:
$$\int{\left(3 x - 5\right)d x} = \frac{x \left(3 x - 10\right)}{2}+C$$
Answer
$$$\int \left(3 x - 5\right)\, dx = \frac{x \left(3 x - 10\right)}{2} + C$$$A