Integral of $$$-4 + \frac{3}{x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(-4 + \frac{3}{x}\right)\, dx$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(-4 + \frac{3}{x}\right)d x}}} = {\color{red}{\left(- \int{4 d x} + \int{\frac{3}{x} d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=4$$$:
$$\int{\frac{3}{x} d x} - {\color{red}{\int{4 d x}}} = \int{\frac{3}{x} d x} - {\color{red}{\left(4 x\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=3$$$ and $$$f{\left(x \right)} = \frac{1}{x}$$$:
$$- 4 x + {\color{red}{\int{\frac{3}{x} d x}}} = - 4 x + {\color{red}{\left(3 \int{\frac{1}{x} d x}\right)}}$$
The integral of $$$\frac{1}{x}$$$ is $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$- 4 x + 3 {\color{red}{\int{\frac{1}{x} d x}}} = - 4 x + 3 {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
Therefore,
$$\int{\left(-4 + \frac{3}{x}\right)d x} = - 4 x + 3 \ln{\left(\left|{x}\right| \right)}$$
Add the constant of integration:
$$\int{\left(-4 + \frac{3}{x}\right)d x} = - 4 x + 3 \ln{\left(\left|{x}\right| \right)}+C$$
Answer
$$$\int \left(-4 + \frac{3}{x}\right)\, dx = \left(- 4 x + 3 \ln\left(\left|{x}\right|\right)\right) + C$$$A