Integral of $$$2 x \cos{\left(x^{2} \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 2 x \cos{\left(x^{2} \right)}\, dx$$$.
Solution
Let $$$u=x^{2}$$$.
Then $$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (steps can be seen »), and we have that $$$x dx = \frac{du}{2}$$$.
Therefore,
$${\color{red}{\int{2 x \cos{\left(x^{2} \right)} d x}}} = {\color{red}{\int{\cos{\left(u \right)} d u}}}$$
The integral of the cosine is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\cos{\left(u \right)} d u}}} = {\color{red}{\sin{\left(u \right)}}}$$
Recall that $$$u=x^{2}$$$:
$$\sin{\left({\color{red}{u}} \right)} = \sin{\left({\color{red}{x^{2}}} \right)}$$
Therefore,
$$\int{2 x \cos{\left(x^{2} \right)} d x} = \sin{\left(x^{2} \right)}$$
Add the constant of integration:
$$\int{2 x \cos{\left(x^{2} \right)} d x} = \sin{\left(x^{2} \right)}+C$$
Answer
$$$\int 2 x \cos{\left(x^{2} \right)}\, dx = \sin{\left(x^{2} \right)} + C$$$A