Integral of $$$\frac{2 t}{\left(t - 3\right)^{2}}$$$

The calculator will find the integral/antiderivative of $$$\frac{2 t}{\left(t - 3\right)^{2}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{2 t}{\left(t - 3\right)^{2}}\, dt$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=2$$$ and $$$f{\left(t \right)} = \frac{t}{\left(t - 3\right)^{2}}$$$:

$${\color{red}{\int{\frac{2 t}{\left(t - 3\right)^{2}} d t}}} = {\color{red}{\left(2 \int{\frac{t}{\left(t - 3\right)^{2}} d t}\right)}}$$

Rewrite the numerator of the integrand as $$$t=t - 3+3$$$ and split the fraction:

$$2 {\color{red}{\int{\frac{t}{\left(t - 3\right)^{2}} d t}}} = 2 {\color{red}{\int{\left(\frac{1}{t - 3} + \frac{3}{\left(t - 3\right)^{2}}\right)d t}}}$$

Integrate term by term:

$$2 {\color{red}{\int{\left(\frac{1}{t - 3} + \frac{3}{\left(t - 3\right)^{2}}\right)d t}}} = 2 {\color{red}{\left(\int{\frac{3}{\left(t - 3\right)^{2}} d t} + \int{\frac{1}{t - 3} d t}\right)}}$$

Let $$$u=t - 3$$$.

Then $$$du=\left(t - 3\right)^{\prime }dt = 1 dt$$$ (steps can be seen »), and we have that $$$dt = du$$$.

Thus,

$$2 \int{\frac{3}{\left(t - 3\right)^{2}} d t} + 2 {\color{red}{\int{\frac{1}{t - 3} d t}}} = 2 \int{\frac{3}{\left(t - 3\right)^{2}} d t} + 2 {\color{red}{\int{\frac{1}{u} d u}}}$$

The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$2 \int{\frac{3}{\left(t - 3\right)^{2}} d t} + 2 {\color{red}{\int{\frac{1}{u} d u}}} = 2 \int{\frac{3}{\left(t - 3\right)^{2}} d t} + 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Recall that $$$u=t - 3$$$:

$$2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} + 2 \int{\frac{3}{\left(t - 3\right)^{2}} d t} = 2 \ln{\left(\left|{{\color{red}{\left(t - 3\right)}}}\right| \right)} + 2 \int{\frac{3}{\left(t - 3\right)^{2}} d t}$$

Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=3$$$ and $$$f{\left(t \right)} = \frac{1}{\left(t - 3\right)^{2}}$$$:

$$2 \ln{\left(\left|{t - 3}\right| \right)} + 2 {\color{red}{\int{\frac{3}{\left(t - 3\right)^{2}} d t}}} = 2 \ln{\left(\left|{t - 3}\right| \right)} + 2 {\color{red}{\left(3 \int{\frac{1}{\left(t - 3\right)^{2}} d t}\right)}}$$

Let $$$u=t - 3$$$.

Then $$$du=\left(t - 3\right)^{\prime }dt = 1 dt$$$ (steps can be seen »), and we have that $$$dt = du$$$.

Thus,

$$2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\int{\frac{1}{\left(t - 3\right)^{2}} d t}}} = 2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$

Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-2$$$:

$$2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\int{\frac{1}{u^{2}} d u}}}=2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\int{u^{-2} d u}}}=2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\left(- u^{-1}\right)}}=2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\left(- \frac{1}{u}\right)}}$$

Recall that $$$u=t - 3$$$:

$$2 \ln{\left(\left|{t - 3}\right| \right)} - 6 {\color{red}{u}}^{-1} = 2 \ln{\left(\left|{t - 3}\right| \right)} - 6 {\color{red}{\left(t - 3\right)}}^{-1}$$

Therefore,

$$\int{\frac{2 t}{\left(t - 3\right)^{2}} d t} = 2 \ln{\left(\left|{t - 3}\right| \right)} - \frac{6}{t - 3}$$

Simplify:

$$\int{\frac{2 t}{\left(t - 3\right)^{2}} d t} = \frac{2 \left(\left(t - 3\right) \ln{\left(\left|{t - 3}\right| \right)} - 3\right)}{t - 3}$$

Add the constant of integration:

$$\int{\frac{2 t}{\left(t - 3\right)^{2}} d t} = \frac{2 \left(\left(t - 3\right) \ln{\left(\left|{t - 3}\right| \right)} - 3\right)}{t - 3}+C$$

Answer

$$$\int \frac{2 t}{\left(t - 3\right)^{2}}\, dt = \frac{2 \left(\left(t - 3\right) \ln\left(\left|{t - 3}\right|\right) - 3\right)}{t - 3} + C$$$A


Please try a new game Rotatly