Integral of $$$22^{x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 22^{x}\, dx$$$.
Solution
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=22$$$:
$${\color{red}{\int{22^{x} d x}}} = {\color{red}{\frac{22^{x}}{\ln{\left(22 \right)}}}}$$
Therefore,
$$\int{22^{x} d x} = \frac{22^{x}}{\ln{\left(22 \right)}}$$
Add the constant of integration:
$$\int{22^{x} d x} = \frac{22^{x}}{\ln{\left(22 \right)}}+C$$
Answer
$$$\int 22^{x}\, dx = \frac{22^{x}}{\ln\left(22\right)} + C$$$A
Please try a new game Rotatly