Integral of $$$2025^{x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 2025^{x}\, dx$$$.
Solution
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=2025$$$:
$${\color{red}{\int{2025^{x} d x}}} = {\color{red}{\frac{2025^{x}}{\ln{\left(2025 \right)}}}}$$
Therefore,
$$\int{2025^{x} d x} = \frac{2025^{x}}{\ln{\left(2025 \right)}}$$
Simplify:
$$\int{2025^{x} d x} = \frac{2025^{x}}{2 \ln{\left(45 \right)}}$$
Add the constant of integration:
$$\int{2025^{x} d x} = \frac{2025^{x}}{2 \ln{\left(45 \right)}}+C$$
Answer
$$$\int 2025^{x}\, dx = \frac{2025^{x}}{2 \ln\left(45\right)} + C$$$A
Please try a new game Rotatly