Integral of $$$6 \pi \sin{\left(x \right)} \cos{\left(2 x \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 6 \pi \sin{\left(x \right)} \cos{\left(2 x \right)}\, dx$$$.
Solution
Rewrite $$$\sin\left(x \right)\cos\left(2 x \right)$$$ using the formula $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ with $$$\alpha=x$$$ and $$$\beta=2 x$$$:
$${\color{red}{\int{6 \pi \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}} = {\color{red}{\int{6 \pi \left(- \frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{2}\right) d x}}}$$
Expand the expression:
$${\color{red}{\int{6 \pi \left(- \frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{2}\right) d x}}} = {\color{red}{\int{\left(- 3 \pi \sin{\left(x \right)} + 3 \pi \sin{\left(3 x \right)}\right)d x}}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = - 6 \pi \sin{\left(x \right)} + 6 \pi \sin{\left(3 x \right)}$$$:
$${\color{red}{\int{\left(- 3 \pi \sin{\left(x \right)} + 3 \pi \sin{\left(3 x \right)}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(- 6 \pi \sin{\left(x \right)} + 6 \pi \sin{\left(3 x \right)}\right)d x}}{2}\right)}}$$
Integrate term by term:
$$\frac{{\color{red}{\int{\left(- 6 \pi \sin{\left(x \right)} + 6 \pi \sin{\left(3 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(- \int{6 \pi \sin{\left(x \right)} d x} + \int{6 \pi \sin{\left(3 x \right)} d x}\right)}}}{2}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=6 \pi$$$ and $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$$\frac{\int{6 \pi \sin{\left(3 x \right)} d x}}{2} - \frac{{\color{red}{\int{6 \pi \sin{\left(x \right)} d x}}}}{2} = \frac{\int{6 \pi \sin{\left(3 x \right)} d x}}{2} - \frac{{\color{red}{\left(6 \pi \int{\sin{\left(x \right)} d x}\right)}}}{2}$$
The integral of the sine is $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$\frac{\int{6 \pi \sin{\left(3 x \right)} d x}}{2} - 3 \pi {\color{red}{\int{\sin{\left(x \right)} d x}}} = \frac{\int{6 \pi \sin{\left(3 x \right)} d x}}{2} - 3 \pi {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=6 \pi$$$ and $$$f{\left(x \right)} = \sin{\left(3 x \right)}$$$:
$$3 \pi \cos{\left(x \right)} + \frac{{\color{red}{\int{6 \pi \sin{\left(3 x \right)} d x}}}}{2} = 3 \pi \cos{\left(x \right)} + \frac{{\color{red}{\left(6 \pi \int{\sin{\left(3 x \right)} d x}\right)}}}{2}$$
Let $$$u=3 x$$$.
Then $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{3}$$$.
Thus,
$$3 \pi \cos{\left(x \right)} + 3 \pi {\color{red}{\int{\sin{\left(3 x \right)} d x}}} = 3 \pi \cos{\left(x \right)} + 3 \pi {\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{3}$$$ and $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$3 \pi \cos{\left(x \right)} + 3 \pi {\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}} = 3 \pi \cos{\left(x \right)} + 3 \pi {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{3}\right)}}$$
The integral of the sine is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$3 \pi \cos{\left(x \right)} + \pi {\color{red}{\int{\sin{\left(u \right)} d u}}} = 3 \pi \cos{\left(x \right)} + \pi {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
Recall that $$$u=3 x$$$:
$$3 \pi \cos{\left(x \right)} - \pi \cos{\left({\color{red}{u}} \right)} = 3 \pi \cos{\left(x \right)} - \pi \cos{\left({\color{red}{\left(3 x\right)}} \right)}$$
Therefore,
$$\int{6 \pi \sin{\left(x \right)} \cos{\left(2 x \right)} d x} = 3 \pi \cos{\left(x \right)} - \pi \cos{\left(3 x \right)}$$
Simplify:
$$\int{6 \pi \sin{\left(x \right)} \cos{\left(2 x \right)} d x} = \pi \left(3 \cos{\left(x \right)} - \cos{\left(3 x \right)}\right)$$
Add the constant of integration:
$$\int{6 \pi \sin{\left(x \right)} \cos{\left(2 x \right)} d x} = \pi \left(3 \cos{\left(x \right)} - \cos{\left(3 x \right)}\right)+C$$
Answer
$$$\int 6 \pi \sin{\left(x \right)} \cos{\left(2 x \right)}\, dx = \pi \left(3 \cos{\left(x \right)} - \cos{\left(3 x \right)}\right) + C$$$A