Integral of $$$\frac{13}{x^{\frac{28}{5}}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{13}{x^{\frac{28}{5}}}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=13$$$ and $$$f{\left(x \right)} = \frac{1}{x^{\frac{28}{5}}}$$$:
$${\color{red}{\int{\frac{13}{x^{\frac{28}{5}}} d x}}} = {\color{red}{\left(13 \int{\frac{1}{x^{\frac{28}{5}}} d x}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=- \frac{28}{5}$$$:
$$13 {\color{red}{\int{\frac{1}{x^{\frac{28}{5}}} d x}}}=13 {\color{red}{\int{x^{- \frac{28}{5}} d x}}}=13 {\color{red}{\frac{x^{- \frac{28}{5} + 1}}{- \frac{28}{5} + 1}}}=13 {\color{red}{\left(- \frac{5 x^{- \frac{23}{5}}}{23}\right)}}=13 {\color{red}{\left(- \frac{5}{23 x^{\frac{23}{5}}}\right)}}$$
Therefore,
$$\int{\frac{13}{x^{\frac{28}{5}}} d x} = - \frac{65}{23 x^{\frac{23}{5}}}$$
Add the constant of integration:
$$\int{\frac{13}{x^{\frac{28}{5}}} d x} = - \frac{65}{23 x^{\frac{23}{5}}}+C$$
Answer
$$$\int \frac{13}{x^{\frac{28}{5}}}\, dx = - \frac{65}{23 x^{\frac{23}{5}}} + C$$$A