Integral of $$$12 x^{11}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 12 x^{11}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=12$$$ and $$$f{\left(x \right)} = x^{11}$$$:
$${\color{red}{\int{12 x^{11} d x}}} = {\color{red}{\left(12 \int{x^{11} d x}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=11$$$:
$$12 {\color{red}{\int{x^{11} d x}}}=12 {\color{red}{\frac{x^{1 + 11}}{1 + 11}}}=12 {\color{red}{\left(\frac{x^{12}}{12}\right)}}$$
Therefore,
$$\int{12 x^{11} d x} = x^{12}$$
Add the constant of integration:
$$\int{12 x^{11} d x} = x^{12}+C$$
Answer
$$$\int 12 x^{11}\, dx = x^{12} + C$$$A