Integral of $$$62 x + \left(12 x - 12\right) e^{2} - 62$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(62 x + \left(12 x - 12\right) e^{2} - 62\right)\, dx$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(62 x + \left(12 x - 12\right) e^{2} - 62\right)d x}}} = {\color{red}{\left(- \int{62 d x} + \int{62 x d x} + \int{\left(12 x - 12\right) e^{2} d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=62$$$:
$$\int{62 x d x} + \int{\left(12 x - 12\right) e^{2} d x} - {\color{red}{\int{62 d x}}} = \int{62 x d x} + \int{\left(12 x - 12\right) e^{2} d x} - {\color{red}{\left(62 x\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=62$$$ and $$$f{\left(x \right)} = x$$$:
$$- 62 x + \int{\left(12 x - 12\right) e^{2} d x} + {\color{red}{\int{62 x d x}}} = - 62 x + \int{\left(12 x - 12\right) e^{2} d x} + {\color{red}{\left(62 \int{x d x}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$$- 62 x + \int{\left(12 x - 12\right) e^{2} d x} + 62 {\color{red}{\int{x d x}}}=- 62 x + \int{\left(12 x - 12\right) e^{2} d x} + 62 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- 62 x + \int{\left(12 x - 12\right) e^{2} d x} + 62 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Simplify the integrand:
$$31 x^{2} - 62 x + {\color{red}{\int{\left(12 x - 12\right) e^{2} d x}}} = 31 x^{2} - 62 x + {\color{red}{\int{12 \left(x - 1\right) e^{2} d x}}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=12 e^{2}$$$ and $$$f{\left(x \right)} = x - 1$$$:
$$31 x^{2} - 62 x + {\color{red}{\int{12 \left(x - 1\right) e^{2} d x}}} = 31 x^{2} - 62 x + {\color{red}{\left(12 e^{2} \int{\left(x - 1\right)d x}\right)}}$$
Integrate term by term:
$$31 x^{2} - 62 x + 12 e^{2} {\color{red}{\int{\left(x - 1\right)d x}}} = 31 x^{2} - 62 x + 12 e^{2} {\color{red}{\left(- \int{1 d x} + \int{x d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:
$$31 x^{2} - 62 x + 12 e^{2} \left(\int{x d x} - {\color{red}{\int{1 d x}}}\right) = 31 x^{2} - 62 x + 12 e^{2} \left(\int{x d x} - {\color{red}{x}}\right)$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$$31 x^{2} - 62 x + 12 e^{2} \left(- x + {\color{red}{\int{x d x}}}\right)=31 x^{2} - 62 x + 12 e^{2} \left(- x + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}\right)=31 x^{2} - 62 x + 12 e^{2} \left(- x + {\color{red}{\left(\frac{x^{2}}{2}\right)}}\right)$$
Therefore,
$$\int{\left(62 x + \left(12 x - 12\right) e^{2} - 62\right)d x} = 31 x^{2} - 62 x + 12 \left(\frac{x^{2}}{2} - x\right) e^{2}$$
Simplify:
$$\int{\left(62 x + \left(12 x - 12\right) e^{2} - 62\right)d x} = x \left(31 + 6 e^{2}\right) \left(x - 2\right)$$
Add the constant of integration:
$$\int{\left(62 x + \left(12 x - 12\right) e^{2} - 62\right)d x} = x \left(31 + 6 e^{2}\right) \left(x - 2\right)+C$$
Answer
$$$\int \left(62 x + \left(12 x - 12\right) e^{2} - 62\right)\, dx = x \left(31 + 6 e^{2}\right) \left(x - 2\right) + C$$$A