Integral of $$$- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}$$$

The calculator will find the integral/antiderivative of $$$- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)\, dx$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=- \frac{3}{2}$$$ and $$$f{\left(x \right)} = \sin{\left(\frac{x}{2} - 1 \right)}$$$:

$${\color{red}{\int{\left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)d x}}} = {\color{red}{\left(- \frac{3 \int{\sin{\left(\frac{x}{2} - 1 \right)} d x}}{2}\right)}}$$

Let $$$u=\frac{x}{2} - 1$$$.

Then $$$du=\left(\frac{x}{2} - 1\right)^{\prime }dx = \frac{dx}{2}$$$ (steps can be seen »), and we have that $$$dx = 2 du$$$.

The integral can be rewritten as

$$- \frac{3 {\color{red}{\int{\sin{\left(\frac{x}{2} - 1 \right)} d x}}}}{2} = - \frac{3 {\color{red}{\int{2 \sin{\left(u \right)} d u}}}}{2}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=2$$$ and $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$- \frac{3 {\color{red}{\int{2 \sin{\left(u \right)} d u}}}}{2} = - \frac{3 {\color{red}{\left(2 \int{\sin{\left(u \right)} d u}\right)}}}{2}$$

The integral of the sine is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$- 3 {\color{red}{\int{\sin{\left(u \right)} d u}}} = - 3 {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$

Recall that $$$u=\frac{x}{2} - 1$$$:

$$3 \cos{\left({\color{red}{u}} \right)} = 3 \cos{\left({\color{red}{\left(\frac{x}{2} - 1\right)}} \right)}$$

Therefore,

$$\int{\left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)d x} = 3 \cos{\left(\frac{x}{2} - 1 \right)}$$

Add the constant of integration:

$$\int{\left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)d x} = 3 \cos{\left(\frac{x}{2} - 1 \right)}+C$$

Answer

$$$\int \left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)\, dx = 3 \cos{\left(\frac{x}{2} - 1 \right)} + C$$$A


Please try a new game Rotatly