Integral of $$$\cos{\left(x \right)}$$$ with respect to $$$y$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \cos{\left(x \right)}\, dy$$$.
Solution
Apply the constant rule $$$\int c\, dy = c y$$$ with $$$c=\cos{\left(x \right)}$$$:
$${\color{red}{\int{\cos{\left(x \right)} d y}}} = {\color{red}{y \cos{\left(x \right)}}}$$
Therefore,
$$\int{\cos{\left(x \right)} d y} = y \cos{\left(x \right)}$$
Add the constant of integration:
$$\int{\cos{\left(x \right)} d y} = y \cos{\left(x \right)}+C$$
Answer
$$$\int \cos{\left(x \right)}\, dy = y \cos{\left(x \right)} + C$$$A
Please try a new game Rotatly