Integral of $$$x^{- \sqrt{2}}$$$

The calculator will find the integral/antiderivative of $$$x^{- \sqrt{2}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int x^{- \sqrt{2}}\, dx$$$.

Solution

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=- \sqrt{2}$$$:

$${\color{red}{\int{x^{- \sqrt{2}} d x}}}={\color{red}{\int{x^{- 2^{\frac{1}{2}}} d x}}}={\color{red}{\frac{x^{1 - \sqrt{2}}}{1 - \sqrt{2}}}}={\color{red}{x^{1 - 2^{\frac{1}{2}}} \left(1 - 2^{\frac{1}{2}}\right)^{-1}}}={\color{red}{\frac{1}{x^{-1 + \sqrt{2}} \left(1 - \sqrt{2}\right)}}}$$

Therefore,

$$\int{x^{- \sqrt{2}} d x} = \frac{1}{x^{-1 + \sqrt{2}} \left(1 - \sqrt{2}\right)}$$

Add the constant of integration:

$$\int{x^{- \sqrt{2}} d x} = \frac{1}{x^{-1 + \sqrt{2}} \left(1 - \sqrt{2}\right)}+C$$

Answer

$$$\int x^{- \sqrt{2}}\, dx = \frac{1}{x^{-1 + \sqrt{2}} \left(1 - \sqrt{2}\right)} + C$$$A


Please try a new game Rotatly