Integral of $$$x^{- p}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int x^{- p}\, dx$$$.
Solution
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=- p$$$:
$${\color{red}{\int{x^{- p} d x}}}={\color{red}{\frac{x^{1 - p}}{1 - p}}}={\color{red}{\frac{x^{1 - p}}{1 - p}}}$$
Therefore,
$$\int{x^{- p} d x} = \frac{x^{1 - p}}{1 - p}$$
Simplify:
$$\int{x^{- p} d x} = - \frac{x^{1 - p}}{p - 1}$$
Add the constant of integration:
$$\int{x^{- p} d x} = - \frac{x^{1 - p}}{p - 1}+C$$
Answer
$$$\int x^{- p}\, dx = - \frac{x^{1 - p}}{p - 1} + C$$$A
Please try a new game Rotatly