Integral of $$$x^{- n}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int x^{- n}\, dx$$$.
Solution
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=- n$$$:
$${\color{red}{\int{x^{- n} d x}}}={\color{red}{\frac{x^{1 - n}}{1 - n}}}={\color{red}{\frac{x^{1 - n}}{1 - n}}}$$
Therefore,
$$\int{x^{- n} d x} = \frac{x^{1 - n}}{1 - n}$$
Simplify:
$$\int{x^{- n} d x} = - \frac{x^{1 - n}}{n - 1}$$
Add the constant of integration:
$$\int{x^{- n} d x} = - \frac{x^{1 - n}}{n - 1}+C$$
Answer
$$$\int x^{- n}\, dx = - \frac{x^{1 - n}}{n - 1} + C$$$A
Please try a new game Rotatly