Integral of $$$\frac{1}{\sqrt{y \left(y - 1\right)}}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{\sqrt{y \left(y - 1\right)}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{1}{\sqrt{y \left(y - 1\right)}}\, dy$$$.

Solution

The input is rewritten: $$$\int{\frac{1}{\sqrt{y \left(y - 1\right)}} d y}=\int{\frac{1}{\sqrt{y^{2} - y}} d y}$$$.

Complete the square (steps can be seen »): $$$y^{2} - y = \left(y - \frac{1}{2}\right)^{2} - \frac{1}{4}$$$:

$${\color{red}{\int{\frac{1}{\sqrt{y^{2} - y}} d y}}} = {\color{red}{\int{\frac{1}{\sqrt{\left(y - \frac{1}{2}\right)^{2} - \frac{1}{4}}} d y}}}$$

Let $$$u=y - \frac{1}{2}$$$.

Then $$$du=\left(y - \frac{1}{2}\right)^{\prime }dy = 1 dy$$$ (steps can be seen »), and we have that $$$dy = du$$$.

So,

$${\color{red}{\int{\frac{1}{\sqrt{\left(y - \frac{1}{2}\right)^{2} - \frac{1}{4}}} d y}}} = {\color{red}{\int{\frac{1}{\sqrt{u^{2} - \frac{1}{4}}} d u}}}$$

Let $$$u=\frac{\cosh{\left(v \right)}}{2}$$$.

Then $$$du=\left(\frac{\cosh{\left(v \right)}}{2}\right)^{\prime }dv = \frac{\sinh{\left(v \right)}}{2} dv$$$ (steps can be seen »).

Also, it follows that $$$v=\operatorname{acosh}{\left(2 u \right)}$$$.

Thus,

$$$\frac{1}{\sqrt{ u ^{2} - \frac{1}{4}}} = \frac{1}{\sqrt{\frac{\cosh^{2}{\left( v \right)}}{4} - \frac{1}{4}}}$$$

Use the identity $$$\cosh^{2}{\left( v \right)} - 1 = \sinh^{2}{\left( v \right)}$$$:

$$$\frac{1}{\sqrt{\frac{\cosh^{2}{\left( v \right)}}{4} - \frac{1}{4}}}=\frac{2}{\sqrt{\cosh^{2}{\left( v \right)} - 1}}=\frac{2}{\sqrt{\sinh^{2}{\left( v \right)}}}$$$

Assuming that $$$\sinh{\left( v \right)} \ge 0$$$, we obtain the following:

$$$\frac{2}{\sqrt{\sinh^{2}{\left( v \right)}}} = \frac{2}{\sinh{\left( v \right)}}$$$

Therefore,

$${\color{red}{\int{\frac{1}{\sqrt{u^{2} - \frac{1}{4}}} d u}}} = {\color{red}{\int{1 d v}}}$$

Apply the constant rule $$$\int c\, dv = c v$$$ with $$$c=1$$$:

$${\color{red}{\int{1 d v}}} = {\color{red}{v}}$$

Recall that $$$v=\operatorname{acosh}{\left(2 u \right)}$$$:

$${\color{red}{v}} = {\color{red}{\operatorname{acosh}{\left(2 u \right)}}}$$

Recall that $$$u=y - \frac{1}{2}$$$:

$$\operatorname{acosh}{\left(2 {\color{red}{u}} \right)} = \operatorname{acosh}{\left(2 {\color{red}{\left(y - \frac{1}{2}\right)}} \right)}$$

Therefore,

$$\int{\frac{1}{\sqrt{y^{2} - y}} d y} = \operatorname{acosh}{\left(2 y - 1 \right)}$$

Add the constant of integration:

$$\int{\frac{1}{\sqrt{y^{2} - y}} d y} = \operatorname{acosh}{\left(2 y - 1 \right)}+C$$

Answer

$$$\int \frac{1}{\sqrt{y \left(y - 1\right)}}\, dy = \operatorname{acosh}{\left(2 y - 1 \right)} + C$$$A


Please try a new game Rotatly