Integral of $$$\frac{1}{\sqrt{y \left(y - 1\right)}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{\sqrt{y \left(y - 1\right)}}\, dy$$$.
Solution
The input is rewritten: $$$\int{\frac{1}{\sqrt{y \left(y - 1\right)}} d y}=\int{\frac{1}{\sqrt{y^{2} - y}} d y}$$$.
Complete the square (steps can be seen »): $$$y^{2} - y = \left(y - \frac{1}{2}\right)^{2} - \frac{1}{4}$$$:
$${\color{red}{\int{\frac{1}{\sqrt{y^{2} - y}} d y}}} = {\color{red}{\int{\frac{1}{\sqrt{\left(y - \frac{1}{2}\right)^{2} - \frac{1}{4}}} d y}}}$$
Let $$$u=y - \frac{1}{2}$$$.
Then $$$du=\left(y - \frac{1}{2}\right)^{\prime }dy = 1 dy$$$ (steps can be seen »), and we have that $$$dy = du$$$.
So,
$${\color{red}{\int{\frac{1}{\sqrt{\left(y - \frac{1}{2}\right)^{2} - \frac{1}{4}}} d y}}} = {\color{red}{\int{\frac{1}{\sqrt{u^{2} - \frac{1}{4}}} d u}}}$$
Let $$$u=\frac{\cosh{\left(v \right)}}{2}$$$.
Then $$$du=\left(\frac{\cosh{\left(v \right)}}{2}\right)^{\prime }dv = \frac{\sinh{\left(v \right)}}{2} dv$$$ (steps can be seen »).
Also, it follows that $$$v=\operatorname{acosh}{\left(2 u \right)}$$$.
Thus,
$$$\frac{1}{\sqrt{ u ^{2} - \frac{1}{4}}} = \frac{1}{\sqrt{\frac{\cosh^{2}{\left( v \right)}}{4} - \frac{1}{4}}}$$$
Use the identity $$$\cosh^{2}{\left( v \right)} - 1 = \sinh^{2}{\left( v \right)}$$$:
$$$\frac{1}{\sqrt{\frac{\cosh^{2}{\left( v \right)}}{4} - \frac{1}{4}}}=\frac{2}{\sqrt{\cosh^{2}{\left( v \right)} - 1}}=\frac{2}{\sqrt{\sinh^{2}{\left( v \right)}}}$$$
Assuming that $$$\sinh{\left( v \right)} \ge 0$$$, we obtain the following:
$$$\frac{2}{\sqrt{\sinh^{2}{\left( v \right)}}} = \frac{2}{\sinh{\left( v \right)}}$$$
Therefore,
$${\color{red}{\int{\frac{1}{\sqrt{u^{2} - \frac{1}{4}}} d u}}} = {\color{red}{\int{1 d v}}}$$
Apply the constant rule $$$\int c\, dv = c v$$$ with $$$c=1$$$:
$${\color{red}{\int{1 d v}}} = {\color{red}{v}}$$
Recall that $$$v=\operatorname{acosh}{\left(2 u \right)}$$$:
$${\color{red}{v}} = {\color{red}{\operatorname{acosh}{\left(2 u \right)}}}$$
Recall that $$$u=y - \frac{1}{2}$$$:
$$\operatorname{acosh}{\left(2 {\color{red}{u}} \right)} = \operatorname{acosh}{\left(2 {\color{red}{\left(y - \frac{1}{2}\right)}} \right)}$$
Therefore,
$$\int{\frac{1}{\sqrt{y^{2} - y}} d y} = \operatorname{acosh}{\left(2 y - 1 \right)}$$
Add the constant of integration:
$$\int{\frac{1}{\sqrt{y^{2} - y}} d y} = \operatorname{acosh}{\left(2 y - 1 \right)}+C$$
Answer
$$$\int \frac{1}{\sqrt{y \left(y - 1\right)}}\, dy = \operatorname{acosh}{\left(2 y - 1 \right)} + C$$$A