Integral of $$$\frac{y}{8}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{y}{8}\, dy$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ with $$$c=\frac{1}{8}$$$ and $$$f{\left(y \right)} = y$$$:
$${\color{red}{\int{\frac{y}{8} d y}}} = {\color{red}{\left(\frac{\int{y d y}}{8}\right)}}$$
Apply the power rule $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$$\frac{{\color{red}{\int{y d y}}}}{8}=\frac{{\color{red}{\frac{y^{1 + 1}}{1 + 1}}}}{8}=\frac{{\color{red}{\left(\frac{y^{2}}{2}\right)}}}{8}$$
Therefore,
$$\int{\frac{y}{8} d y} = \frac{y^{2}}{16}$$
Add the constant of integration:
$$\int{\frac{y}{8} d y} = \frac{y^{2}}{16}+C$$
Answer
$$$\int \frac{y}{8}\, dy = \frac{y^{2}}{16} + C$$$A