Integral of $$$\frac{x - 2}{x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{x - 2}{x}\, dx$$$.
Solution
Expand the expression:
$${\color{red}{\int{\frac{x - 2}{x} d x}}} = {\color{red}{\int{\left(1 - \frac{2}{x}\right)d x}}}$$
Integrate term by term:
$${\color{red}{\int{\left(1 - \frac{2}{x}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{\frac{2}{x} d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:
$$- \int{\frac{2}{x} d x} + {\color{red}{\int{1 d x}}} = - \int{\frac{2}{x} d x} + {\color{red}{x}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=2$$$ and $$$f{\left(x \right)} = \frac{1}{x}$$$:
$$x - {\color{red}{\int{\frac{2}{x} d x}}} = x - {\color{red}{\left(2 \int{\frac{1}{x} d x}\right)}}$$
The integral of $$$\frac{1}{x}$$$ is $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$x - 2 {\color{red}{\int{\frac{1}{x} d x}}} = x - 2 {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
Therefore,
$$\int{\frac{x - 2}{x} d x} = x - 2 \ln{\left(\left|{x}\right| \right)}$$
Add the constant of integration:
$$\int{\frac{x - 2}{x} d x} = x - 2 \ln{\left(\left|{x}\right| \right)}+C$$
Answer
$$$\int \frac{x - 2}{x}\, dx = \left(x - 2 \ln\left(\left|{x}\right|\right)\right) + C$$$A