Integral of $$$\frac{x}{10}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{x}{10}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{10}$$$ and $$$f{\left(x \right)} = x$$$:
$${\color{red}{\int{\frac{x}{10} d x}}} = {\color{red}{\left(\frac{\int{x d x}}{10}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$$\frac{{\color{red}{\int{x d x}}}}{10}=\frac{{\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{10}=\frac{{\color{red}{\left(\frac{x^{2}}{2}\right)}}}{10}$$
Therefore,
$$\int{\frac{x}{10} d x} = \frac{x^{2}}{20}$$
Add the constant of integration:
$$\int{\frac{x}{10} d x} = \frac{x^{2}}{20}+C$$
Answer
$$$\int \frac{x}{10}\, dx = \frac{x^{2}}{20} + C$$$A