Integral of $$$- \frac{1}{x^{2}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(- \frac{1}{x^{2}}\right)\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=-1$$$ and $$$f{\left(x \right)} = \frac{1}{x^{2}}$$$:
$${\color{red}{\int{\left(- \frac{1}{x^{2}}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{x^{2}} d x}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-2$$$:
$$- {\color{red}{\int{\frac{1}{x^{2}} d x}}}=- {\color{red}{\int{x^{-2} d x}}}=- {\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}=- {\color{red}{\left(- x^{-1}\right)}}=- {\color{red}{\left(- \frac{1}{x}\right)}}$$
Therefore,
$$\int{\left(- \frac{1}{x^{2}}\right)d x} = \frac{1}{x}$$
Add the constant of integration:
$$\int{\left(- \frac{1}{x^{2}}\right)d x} = \frac{1}{x}+C$$
Answer
$$$\int \left(- \frac{1}{x^{2}}\right)\, dx = \frac{1}{x} + C$$$A