Integral of $$$- \frac{\sin{\left(2 x \right)}}{4}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(- \frac{\sin{\left(2 x \right)}}{4}\right)\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=- \frac{1}{4}$$$ and $$$f{\left(x \right)} = \sin{\left(2 x \right)}$$$:
$${\color{red}{\int{\left(- \frac{\sin{\left(2 x \right)}}{4}\right)d x}}} = {\color{red}{\left(- \frac{\int{\sin{\left(2 x \right)} d x}}{4}\right)}}$$
Let $$$u=2 x$$$.
Then $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{2}$$$.
The integral becomes
$$- \frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{4} = - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{4}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$- \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{4} = - \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{4}$$
The integral of the sine is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$- \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{8} = - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{8}$$
Recall that $$$u=2 x$$$:
$$\frac{\cos{\left({\color{red}{u}} \right)}}{8} = \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{8}$$
Therefore,
$$\int{\left(- \frac{\sin{\left(2 x \right)}}{4}\right)d x} = \frac{\cos{\left(2 x \right)}}{8}$$
Add the constant of integration:
$$\int{\left(- \frac{\sin{\left(2 x \right)}}{4}\right)d x} = \frac{\cos{\left(2 x \right)}}{8}+C$$
Answer
$$$\int \left(- \frac{\sin{\left(2 x \right)}}{4}\right)\, dx = \frac{\cos{\left(2 x \right)}}{8} + C$$$A